ADMINISTRATIVE ORDER IN THE CIRCUIT COURT OF THE
NO. 2014-05-01 NINTH JUDICIAL CIRCUIT, IN AND
FOR ORANGE COUNTY, FLORIDA

AMENDED ORDER GOVERNING THE JURY SELECTION PLAN,
ORANGE COUNTY

WHEREAS, pursuant to Article V, section 2(d) of the Florida Constitution and section 43.26,
Florida Statutes, the chief judge of each judicial circuit is charged with the authority and the power to
do everything necessary to promote the prompt and efficient administration of justice; and

WHEREAS, pursuant to the chief judge’s constitutional and statutory responsibility for
administrative supervision of the courts within the circuit and to create and maintain an organization
capable of effecting the efficient, prompt, and proper administration of justice for the citizens of this
State, the chief judge is required to exercise direction, see Fla. R. Jud. Admin. 2.215(b)(2), (b)(3); and

WHEREAS, pursuant to section 40.001, Florida Statutes, the chief judge of each judicial
circuit is vested with the overall authority and responsibility for the management, operation, and
oversight of the jury system within his or her circuit; and

WHEREAS, pursuant to section 40.225(2), Florida Statutes, the chief judge of the circuit, if
performing the duties of juror candidate selection as provided in section 40.02, Florida Statutes, shall
submit a plan for the selection of juror candidates to the Chief Justice for approval. The plan must be
reapproved whenever required by a change in the law, a change in the technical standards and
procedures, or a change in the approved hardware or software used in the automated system of jury
venire selection; and

WHEREAS, the Chief Judge of the Ninth Judicial Circuit performs the duties of juror

candidate selection as provided in section 40.02, Florida Statutes; and



WHEREAS, it is necessary to implement changes to the jury management vendor, and
technical standards and procedures, and in the approved hardware and software used in the automated
system of jury venire selection in Orange County to facilitate an improved system consistent with
technological advancements; and

WHEREAS, this automated system of jury venire selection for Orange County, as set forth in
this Administrative Order, was approved and authorized by the Chief Justice on August 9, 2018, by
Supreme Court of Florida Administrative Order No. AOSC18-40, attached as Attachment D.

NOW, THEREFORE, I, Frederick J. Lauten, pursuant to the authority vested in me as Chief
Judge of the Ninth Judicial Circuit of Florida under Florida Rule of Judicial Administration 2.215,
effective immediately, do order and establish the procedures and method in Orange County for the
selection of persons for grand jury and petit jury service:

1. ¥endor: The jury software vendor is Jury Systems Incorporated (JSI) which provides the
jury management system (JMS) entitled “JURY + Web Generation.”

2. Equipment: The JMS SQL database runs on a Cisco USC C220 M4 server. This server is
located in the Orange County Courthouse complex which is a secured facility under Court
Administration’s control. There are both test and production instances of the JMS application and
both run under Windows Server 2012 R2 and Microsoft SQL Server 2014,

a. The main jury database is replicated to a secondary jury server at the Orange County
Courthouse complex. This secondary server is an VMWare ESXi virtual server running
Windows Server Datacenter Edition 2016. In addition to the replicated JMS database, this
server will be configured as a secondary web/application server to execute the JMS
application in the event of a failure of the main server.

b. In the event of a network failure, users in the Orange County Courthouse will execute the
application from the replicated JMS database.

¢. Nightly, Court Administration will fully back up the JMS database using Commvault

Simpana backup software for Windows servers stored to both local and offsite disks. Backup
disks are kept for one month.

Page 2 of 18



d. All hardware and software associated with the jury application will be upgraded on an as
needed basis.

3. Method for Selecting Venire:

a. The names shall be taken from:

1. A quarterly updated list of Florida Department of Highway Safety and Motor Vehicle
(DHSMV) licensed drivers and identification card holders, 18 years of age or older, who
are citizens of the United States, and legal residents of Florida residing in Orange
County.

2. Persons filing affidavits pursuant to section 40,011, Florida Statutes.

b. The Clerk of Court for Orange County is designated the official custodian of the DHSMV
list provided specifically for venire selection and shall ensure that it is not accessible to
anyone other than those directly involved in the selection of venires, as herein provided.

c. The Court Administrator shall cause Orange County petit and grand jury venires to be
selected from the DHSMYV list programmed into Court Administration’s computer network
using the method described in Attachment A (Process for Maintaining and Updating
Prospective Juror File) and Attachment B (Juror Selection Process) in accordance with
directions received from the Chief Judge or the Chief Judge’s designee. Court Administration
Jury personnel may draw the venires and perform any other functions allowed by statute.

4. Administrative Order 2014-05 is vacated and set aside except to the extent that it has been
incorporated and/or amended herein. Vacating an Administrative Order that vacates a prior Order
does not revive the prior Order.

DONE AND ORDERED at Orlando, Florida, this 14™ day of August, 2018. Nunc pro
tunc to August 9, 2018.

/s/
Frederick J. Lauten
Chief Judge

Copies provided to:

Clerk of Courts, Orange County
Clerk of Courts, Osceola County
General E-Mail Distribution List
http://www.ninthcircuit.org

Page 3 of 18



Attachment A
Process for Maintaining and Updating Prospective Juror File

The Florida Department of Highway Safety and Motor Vehicles (DHSMV) sends an
electronic file of licensed drivers and ID card holders to the Florida Association of Court
Clerks (FACC). After separating the records into multiple files based on “county of
residence” and excluding drivers and ID card holders under 18 years of age, the FACC
transmits the appropriate county’s file to the Clerk of Court for that county via email.

A software utility from Jury Systems Incorporated (JSI) is used to match and merge the new
FACC file with existing juror records stored in the Jury Management System (JMS), an
application also from JSI. The JMS database includes juror personal data, service history,
and excusal status. Jurors who are temporarily or permanently excused are flagged as
ineligible but not deleted from the database. The records from the FACC file are compared
to the existing juror records in the JMS database using driver’s license number. Where no
match is found against either driver’s license number or social security number, the FACC
records are matched to the JMS records using the last name, suffix, first name, and date of
birth as a set of matching criteria. Where a match is found, the addresses are compared and,
if different, the DHSMV address replaces the JMS address. Records that exist in the FACC
file but not in the JMS database, are added to the JMS database. Records that exist in the
JMS database but not in the FACC file, are flagged as inactive in the JMS database unless
they were created as a result of the filing of an affidavit pursuant to section 40.011, Florida
Statutes. Records that are flagged as inactive remain in the JMS database indefinitely but are
bypassed by the system during the jury pool selection process.

Maintenance is conducted on a regular basis to update juror records in accordance with
section 40.022. Florida Statutes. (e.g., identifying convicted felons, deceased persons. and
legally incapacitated persons, and processing them according to statute). New
maintenance procedures will be developed and employed to comply with other relevant
statutes when implemented, assuming that data and/or processes from external agencies
are available.

Persons filing affidavits pursuant to section 40.011, Florida Statutes are added to the JMS
database through an on-line process within two working days.

Page 4 of 18



Attachment B
Juror Selection Process

The selection of candidates for weekly petit jury pools is done at least five weeks in
advance of the reporting date. For Grand Jury, selection of candidates is done twice a
year, three months in advance of the reporting date.

Using JMS. the Jury Pool Manager or his/her respective designees. enters the jury pool
location and the number of jurors required (minimum of 250 per section 40.02, Florida
Statutes) for the service date specified. No other information is supplied by the user.
The JMS will select and summon the number of jurors requested. Data associated with
the selection of a juror pool (e.g.. date. number of jurors requested) is stored for future
retrieval and reporting.

Prior to invoking the process for randomly selecting jurors, JIMS determines the number
of jurors previously postponed, deferred. or re-summoned to the service date specified
and subtracts this number from the total number requested. The result is the number of
jurors that JMS must randomly select from the juror database.

The JMS random selection process is then invoked for each jury pool requested. For
this process, Jury Systems Incorporated uses a Universal Random Generator
system, more fully detailed in Attachment C.

Prior to printing and sending summonses, juror addresses are processed by Peregrine
Solutions software. Peregrine Solutions performs address verification, a process of
checking an address to ensure that it is properly formatted and conforms to address
structure standards. If Peregrine Solutions cannot resolve an address, it is left unchanged.

A jury summons. specifying the jury service location and date and time to appear. is then
produced and mailed to each individual selected.

Page 5 of 18



Attachment C

JURY SYSTEMS

INCORPORATETD

JURY+ Next Generation
Universal Random Generator

Detailed Design & Functionality

Notice

Techniques and work product contained in this
document are considered proprietary to Jury
Systems Incorporated. They may not be
revealed or released to any party without the
express written consent of Jury Systems
Incorporated.

This material may not be copied or reproduced
in any form without the express written
permission of Jury Systems Incorporated.

©QOctober 2006



CONTENTS

Development of the Universal Random Number Generator...........ccccuveererrcneenns
JURY+ use of the Universal Random Number Generator ............ccccceuverervsvenenne.
Logic Specifications for the Universal Random Number Generator..................
Validation of the Universal Random Number Generator ..............cocvveererrrevenenenes

APPENDIX A - Toward a Universal Random Number Generator By George
Marsaglia and Arif Saman..............ccovvvvrrirnimminees e sssesesesesesases 8



1. Introduction

This document describes the theory and structure of the random number generator that is
used by the JURY+ Jury Management System to perform those jury management
business functions that require randomization.

The random number generator employed by the JURY+ software is the “Universal”
generator which appeared in an article written by George Marsaglia and Arif Zaman who
are part of the “Supercomputer Computations Research Institute and Department of
Statistics” at The Florida State University, Tallahassee. Also contributing to the article
was Wai Wan Tsang a member of the "Department of Computer Science” at the University
of Hong Kong.

The article (titled: “Toward a Universal Random Number Generator” is included in its
entirety as an appendix to this document.

2. The Definition of the Universal Random Number Generator

The Universal generator algorithm is a combination of a Fibonacci sequence (with lags
of 97 and 33, and operation "subtraction plus one, moduloc one") and an "arithmetic
sequence" (using subtraction).

It passes ALL of the tests for random number generators and has a period of 2'% and is
completely portable (gives bit identical results on all machines with at least 24-bit
mantissas in the floating point representation).

The Universal random number generator employed by Jury Systems Incorporated in its
JURY+ application software is a true, exact implementation of the algorithm defined in
"Toward a Universal Random Number Generator" and thus all randomness tests for that
process published in statistical literature applies to the JURY+ implementation.

3. Development of the Universal Random Number Generator

In June 20086, the Florida State AOC required that all randomization for purposes of jury
selection be accomplished using the Universal Random Number generator described in
an article titied “Towards a Universal Random Number Generator” by George Marsaglia.
The Universal Generator is a combination generator. It combines two different generators,
the first of which takes two user seed values, converts them into 4 seed values and
generates a sequence of 97 random numbers. These number become “seed” values for
the second random generator which uses them in a combination process to combine the
series of random numbers, producing a “Universal” value.

Previously, Jury Systems Incorporated used the "Marsaglia” random number generator
which is a feedback shift register (FSR) method to generate uniform random numbers
between 0 and 1, inclusive. The method was named for and based upon the idea of
George Marsaglia (1965) who developed a coupled random number generator called
super duper. Super duper couples a multiplicative-congruential generator with an FSR



generator. This generator was subjected to extensive testing by Rand Laboratories and
shown to pass all randomness tests for all sample sizes likely to be encountered in the
JURY selection process. This routine is a 2-seed routine, in that each number in a random
sequence is provided based on two seed values.

Using the referenced article and a published C-language implementation of the Universal
random generator (both of which are included as an appendix to this document), Jury
Systems Incorporated created a version of the routine for integration into its JURY+
application for use in Florida and any other site that may desire it. The JSI implementation
was done in August of 2006 and is a COBOL version of the routine. A copy of the JSI
implementation is also included in an appendix.

4, JURY+ use of the Universal Random Number Generator

Wherever randomness is requisite in the JURY+ application, the Universal generator is
employed. Those application functionalities inciude the following:

. Source List Processing
When source lists are processed to supply juror names to JURY+, each member of
the list is assigned a random number. The list is then sorted by the random number
(known as a Juror Identification Number - JID) and the first 'n' records are selected
per client requirements.

. Juror Summonsing
When it is necessary to summon jurors to a specific court and date, the full set of
eligible jurors is assigned a random number. The list is sorted and the first ‘n’ number
of jurors are selected.

. Panel Selection
When requests for juror panels are received at the assembly room, the user initiates
a computer program to create a panel of the requested size. The computer program
provides a randomly ordered list of jurors available for service at that moment.

Each juror in the pool is assigned a random number. Once all jurors have thus been
assigned a temporary unigue number, the list is ordered by that number. Once the
panel jurors are selected from this list, the panel jurors are re-randomized and a Case
Information Sheet listing them is produced assuring that each juror has an equal
opportunity to be the first seated for voir dire.

. Reporting
Many of the JURY+ reports allow the user to select list of jurors that are ordered
randomly.



5. Logic Specifications for the Universal Random Number Generator

The Universal Generator is a combination generator in that it combines two different random
generators to provide a random series that passes every randomness test. The principal
component of the two has a very long period, about 10%, It is a lagged-Fibonacci generator
based on the binary operation x times y on reals x and y.

The Fibonacci generator has an extremely long period and appears to be suitably random
based on results of stringent tests that were applied to it. However, there is one test which
it fails: the “birthday-spacings test. In order to get a generator that passes all of the stringent
tests the first generator is combined with a second generator.

The choice of the second generator is a simple arithmetic sequence for the prime modulus
224 .3 = 16777213.

Detailed information regarding the theory behind the Universal Random number generator
is provided in the published article included as appendix C of this document. The article
provides a Fortran language version of the algorithm.

Sometime after the original article appeared, the Fortran program was converted into a “C”
programming language implementation and published. The “C" version is included as an
appendix to this document.

For implementation into JURY+, JSI developed a COBOL language implementation of the
Universal generator by duplicating the logic published in the “C” program. The JSI version
is also included in an Appendix to this document.

To the greatest extent possible, the variable names used in the JSI version directly
correspond to identically named variables in the “C” implementation. This makes the
comparison of the two sets of logic much more straight forward.

A review of the “COBOL" version shows that there are two entry points (distinct processes)
in the Universal Algorithm. The first entry point is a routine “1000-set-seeds” (this
corresponds to the subroutine called “RMARIN” in the “C” version.

The 1000-set-seeds routine implements the “first” random generator in the Universal
process. Using two seed values supplied by the user, it creates four seed values and uses
them to create a Fibonacci sequence of 97 random numbers. This series of random
numbers is used in the creation of the Universal random number.

Additionally this routine creates a representation of a second sequence (initially set to
362436/16777216 and referenced by variables “C”, “CD", “CM"). The Fibonacci series and
this series are combined (in the random number generation routine below) to create a
Universal Random number.

The second routine is 2000-Gen-Rand (this corresponds to the "RANMAR” routine in the
“C” program). This routine generates a Universal Random number by combining the two
sequences (series) set up in the 1000-set-seeds routine.



First, two entries from the Fibonacci series (referenced with variables “I" and “J") are
subtracted from each other, (the first time a Universal random number is requested the two
entries referenced are 97 and 33 respectively) giving the basis for our Universal random
number.

After the basis calculated, it replaces the Fibonacci number referenced by “I” (in preparation
for the next time a universal number is needed). Then, both references (“I" and “J") are
decremented. When either of the reference indicators (“I” or “J") reach zero, they are reset
to their initial value (97 and 33 respectively). Thus the series of 97 numbers is processed in
a circular fashion. (All of this is in preparation for the next request for a Universal random
numbery).

Finally, the next number in the second series (which was initialized in 1000-set-seeds and
are represented by variables “C”, “CD”, and “CM”) is computed and combined with the basis
random number (via subtraction). The result is returned to the calling program as a
“Universal” random number.

6. Validation of the Universal Random Number Generator

As indicated in the "Towards a Universal Random Number”, the statistical “randomness” of
this routine has been thoroughly tested and documented. It is also clearly explained that an
appropriately coded algorithm, regardless of the language it is written in or the computer it
is executed on, produces exactly the same “random” sequence when given identical seed
values.

Thus, the validation (and thus proof of randomness) becomes one of showing that two
different implementation produce the same known results when given appropriate seed
values.

The JSI implementation produces the same results as the program on which it was modeled.
The “C” version of the program indicates the following test to insure a properly functioning
Universal random number generator algorithm:

Use IJ = 1802 & KL = 9373 to test the random number generator. The
subroutine RANMAR should be used to generate 20000 random numbers.
Then display the next six random numbers generated multiplied by

4096*4096
If the random number generator is working properly, the random numbers
should be:

6533892.0 14220222.0 7275067.0
6172232.0 8354498.0 10633180.0

These are exactly the results produced by calling the JSIRAND1 routine with seed value
1082 and 9373 and viewing the 20001 through 20006 random numbers.



l APPENDIX A — Toward a Universal Random Number Generator By George

Marsaglia and Arif Saman

Suntishics & Probability Letters 8 (1990) 35-39
Mocth-Huolland

Juouasy 159

TOWARD A UNIVERSAL RANDOM NUMBER GENERATOR

George MARSAGLIA and Al ZAMAN

Supercomputer Computations Researcl Institute and Depariment of Statsuics, The Florida State Univirsity, Toltabhsary,

FI iritv, 1°SA

Wai Wan TSANG

Department of Compurer Screnve, Usiweitt of Hong Kong, Pekfulum Rewud, Heag Kong

Received Drevember 1987
Revised June 1988

Abstract: This articie describes an approsch towards » random number generator that passes 2} of the stringent tests {o
rundomneis we have put te o1, and that & sble o proxdece exacthy the care soquence of cmform randem varizles in g woke
vanety of compuiers, including TRSEC. Apple. Maciniosh, Commodote, Kavpro, 1IBM PC. AT, PC and A 1 clones. Sun, Vi,
IBM 3607370, 3050, Amdahl, CDC Cyber and even 205 and 17A supercempaters,

Kevwoeds: Random number generator.

1. Introduction

An essenual property of a random number gener-
ator is that it produce a satisfactorily random
seguence of numbers. Increasingly sophisticated
uses have raised guestions about the suitability of
many of the commonly available generatars (see.
for example, Marsaglia. 1986) Another shoricom-
ing in many, indeed most, random number genera-
tors is they are not able to produce the same
sequence of variables in 3 wide variety of com-
puters. Such a requirement seems essential for an
experimental science that lacks standardized
equipment for verifying results,

We uddress these deficiencies here. suggesting a
combinalion generalor tailored particuiarly for re-
producibility in all CPU’s with at least 16-bit
iMeger arithmetic. The random numbers them-
selves are reals with 24-bit fractions, uniform on
[0, 1). We provide a suggested Fortran implemen.
tation of this “universal”™ gencrator, together with
suggested sample output with which one may verify
that a particular computer produces cxacily the
same bit patterns as the computers enumerated in

the abstract. The Fortran code is so straightfor-
ware that versions may be reacdhly written  tor
other languages: so far, correspondents have wril-
ten or confirmed resolts for Busic, Fortran, Pascal,
C. Modula 1l and Ada versions.

A list of desirable properties for a candom
number generator might include:

(1) Randomness. Provides a sequence of inde-
pendeat vmilorm random vanables suztable for all
reasonable applications. In pacticular, passes all
the fatest tests for randomness and mndependence.

(2) Long period. Able to produce. without re-
peating the imtial sequence. all of the random
variables for the huge sumples that curreant com-
puter speeds make possible.

(3) Efficiency. Execution is rapid. with moedest
memory requirements.

{4) Repeatabifine. Inlinl conditions (seed val-
ues) completely determine the resuluing secuence
ol random variables,

(3) Portabifuy. ldentical sequences of randor
varigbles may be produced in 4 wide varietv of
compulers, for given starting values.

(6) Homeogeneiny. Al subsets of hits of the

DL6T-T152,/90,/53.50 ¢ 199, Elsevier Science Publishers BV, (North-1oland) 1



Volume 9. Number 1

rumbers must be random. from the most- 1o the
beast-significant bits.

2. Chuice of the method

We seek a generator that has ail of these desirable
propertes. (AH? Well, alinost all; the geacraior we
propose falls short on efficiency. for n is slower
than some of the standard. simple. machine-de-
pendent generators. But all of the standard genes-
ators fuik one or more of the stringent tests for
randomness. See Marsagha, [586.)

Our choice is a combination generator. It com-
bines two different generators. The principal com-
ponent of the two has a very long period. about
10™. 11 is a lagged-Fibonacci generator based on
the binary operation x+¥ on reals x and y de-
fined by

x-y={if x 2y then x —p, clse x ~y+ 1}.

Uliimaiely, we require a sequence of reals on
[0, 1% L. Ui, Uy, ..., each with a 24-bit fraction.
We choose 24 bits because it 1s the most common
fraction size for single-precision reals and because
the operation x « v can bu carried out exactly. with
no loss of bils, in most computers——those with
reals having fractions of 24 or more bits,

This chotee allows 0w 10 vse 2 lapged-Fi
generator, designated F(r. s, +). as the basic com-
ponent of our universal gencrator. It provides a
sequence of reals by means of the operation x«y:

Xy Xpoxp. owith x, o x, L0x,

The lags r and s are chosen so that the sequence
is satisfactorily random and has a very long period.
[f the initial (seed) values. x|, x,..... x, are each
24-bit fractions. x, = /,/2*_ then the resulting se-
quence. generated by x = x, ,vx,_ .. will pro-
duce 4 sequence with period and structure identi-
cal 10 that of the corresponding sequence of in-

tegers.
Lody b , mod 2%

with {, =4 -1

" L

For simiable choices of the lags r and ¢ the
period of the sequence is (2™ - 1) x 27! The
need to choose r arge for long period and ran-
domness must be balanced with the resulting

36

STATISTICS & PROBABILITY LETTERS

Januury 1990

memory costs: a table of the » most recent
values must be stored. We have chosen r = 97,
& =33, The resulting cost of 97 storage locations
for the circular list needed w implement the gen-
erator seems reasonable. A few hundred memory
locations more or less is no longer the problem it
used to be. The peniod of the resulling geacrator is
(77 = 1% 2™ _ahont 2'* which we hoost 1o 2%
by the other pan of the combination generator,
described below. Methods for establishing periods
for lagged-Fibonacct generators are given in
Marsaglia and Tsay (1983).

3. The second part of the combination

We now turn 10 choice of a generator to combine
with the F(87, 33, -} chosen above. We are not
content with that generator atone, even though it
has on extremely long pericd and appears to he
suitably random from the stringent tests we have
applied 10 it. But it fails one of the tests: the
birthday-spacings test. A typical version of this
test goes as follows: let each of the generated
values X\, x.....0 represent a “hirthday” in g
“year” of, say, 2™ days. Choose, say, m = 512
barthdays, x,. x,..... &, Sort these to get v, <
% Xy,,. FOTm spacings », = x,. Jh =
YT X BTG T X200 Yo ™ Ky = Xpme 13
Sort the spacings, getting 3, < ¥y < - € ¥,
The test statistic is /., the number of duplicate
values w the surled spacings, ie., initiaiiee J +- §
then for i =2 0 m. put S J 4 1if 3, =y, .
The resulting J should have a Poisson distributlion
with mean A = m’/(4n) = m' /2%
Lagged-Fibonacet generators F(r. s, +) fal this
test, unless the lag r is more than 500 or the
binary operation « is multiplication for odd in-
tegers mod 2*. The count J, the aumber of dupli-
cate spacings, is oaly asymptotically Poisson dis-
tributed, requiring thut a. the length of the vear,
be large. Applications of the birthday spacings test
typically choose 2 to he 100000 or more— for
exampie, using the iefimost 18 or more bits of the
random number to provide a “ birthday".
Detailed discussion of the test and test results
will appear elsewhere, but here are results of a
typical test on four ditferent generators (see Table
1): two lagged-Fibonacci generators using subtrac-

xl:}_g:_: PR



Yolurme 9, Number |

STATISTICS & PROBABILITY LETTLRS

January 1990

Table 3
A tethday-spacings test for four generators
duplicate aumber F{97.73, )
Apaings cxpected ohserved

() 36.79 41

I 3675 18

2 18,39 1f
a3 803 28
chi-square for 3 d.f 481
prebability of beuter it 1.0064)

tion, a lagged-Fibonacci generator using multipli-
cation on odd integers, and a popular congruential
generator, x, = 69069x, _,. all for modulus 2",
The leftmost 235 bits are used to choose one of 512
birthdays. Thus n = 2% and m = 2% so J should
be Poisson distributed with A= m' /(dn)=1. Of
the four, only the F(97. 33, «) and the congruen-
tial generator pass. The two lagged-Fibonacei gen-
erators using subtraction f{ail the test. Ther
duplicate-spacing couots are far from Poisson dis-
tibvicd, and remain so, whalever the chowe of
seed values, (and for a wide variety of chowes of
n.m and lags r. ~ as well).

In order to get a generator that passes alf the
stringent tests we have applied, we have resorted
10 combining the £(97, 33, =) generator with
second generator. Combining different generators

hus strong

1986).

Our choice of the second generator is a simple
arithmetic sequence for the prime modulus 2* - 3
= 16777213, For an initial integer /, subseqguent
mlegers are -k, -2k, - 3k,.... mod
16777213, This may be implemented in 24-bit
reals. again with no bits lost, by letting the initial
value be, say ¢ = 362436,/17666216, then forming
successive 24-bit reals by the operation ¢ = d. de-
Nined as

{fc>dthenc - d,
else ¢~ d A 167772]3/16777215}.

e |

heoratical suppont {see Marsaghia,

ced

Here ¢ 1s some convenient Z4-bit ravanai, say
d = 7654321 /16777216, The resulting sequence has
period 2*! — 3 and while it is far too regular for
use alone, it serves, when combined by means of
the » operation with the F(97. 33, -) sequence, ©
provide a composite sequence that meets all of the

F(35.28. )

F(97.33, ») congraential

ohserved amerved observed
9 4 Y
14 k] A
34 el pii]
23 [} 7
56,91 1.53 0.29

1.} 0.13

0.432

criteria mentioned in the intreduction, except for
efficiency. All of the operations in the combina-
tion generator are simple and efficient, and the
generation part is quite simpie, bul the setup
procedure, setting the initial 97 x values, is more
complicated than the generating procedure. We
now turn to details of implementation.

4. lmplementation

We have two binary operations, each able to pro-
duce exact arithmetic on reats with 24-bit fruac.
tons:

xry={if xay then x ~ p,else x=p+ 1),

cod= (il c=d then ¢ — d,
else ¢ = d+ 16711213/06171216}.

We require computer instructions that will gener-
ate two sequences:

Ny Xay Xgoies Xg70 Nggaoons
with v, = x, g, .

LAUIPR A TR 0 RN

with ¢, = ¢, ,+(7634321 716777216},
Then produce the combined sequence

L’p l-’;;- L’r'l..-... “’ithu i, W A
d n “a

The ¢ sequence requires only one initial value.
which we arhitranily set to ¢, = 362436 /16777216,
The x sequence requires 97 initial (seed) values,
cach a real of the form 7/16777216, withG £ f <
16777215, The main problem in implementing the
uwuversal generator is in finding a suitable way to
set the 97 mital values, a way that is both random
and consistent from one computer 1o another,



Yolume 9, Number |

Table ?
Foriran subprograms for initiahzing and calling UNI

STATISTICS & PROBABILITY LETTERS

Janvary 19%0

SUBROUTINE RSTART (I J. K. L)
REAL U(97)
COMMON /SET1/ U, C. CD. CM. IP, IP
DO 211 =197
S=0.
T=3$
DOIIF~]28
M = MOD (MOIXI# J, 179} ¢ K, 179}
1=
J=X
K=M
L = MOD(53+L ~ 1. 169)
IFOMODYL M, 643 GE I S =S4 T
1 TwSaT
2 WIn-S
C = 362436.716777216.
€D = 7654321, /167777216
CM = 16777213./16777216.
1P =9
P =33
RETURN
END

FUNCTION UNI()

Ceses  FIRST CALL RSTART ;1) K, L)
Cees  WITH LS. K. LINTEGERS

Csee  FROMITO 168, NOT ALL )

Cess  NOTE: RSTART CHANGES L J K, L
Ceese S0BECAREFUL IF YOU REUSE
Ceoe  THEMINTHE CALLING PROCGRAM.

REAL U(97)
COMMON /SET: 7 L, C.CD,CM, IP.JP
UND M v
IFQUNLLT.0.) UNT = UNT + 1.
UP) = UNI
1P~ iP=1
IFIIP EQ.h 1P = 97

==
IFUP.EQU) IP = 47
C-C-CD
IFCLTA)C = C 4 OM
UNI = UNI - ¢
IF(UNLLT.0) UN] = UNI+
RETURN
END

The F(97. 33, - mod 1) generator is quite
robust, in that it gives good results even for bad
initial values. Nonetheless, we feel that the initial
table should itself he filled by means of a good
generator, one that need not be fast because it is
used only for the setup. Of course, we might ask
that the user provide 97 sced values, each with an
exact 24-bit [raction, but that seems too greal a
hurden. After considerable experimcntation, we
recommend the following procedure:

Assign values bit-by-bi1 to the iniual 1able
ULy, I(2),.... LG9 with a random sequence of
bits by, by, Baoo... Thus U1 =006, ... by,
U(2) = 0.bybyg . .. by, and so on, The sequence of
bits is generaled by combining two different gen-
erators, euach suitable for exact implementation in
any computer: one a 3-lag Fibonacci gencrator
using multiplication, the other an ordinary con-
gruential generator for modulus 169.

The two sequences that are combined 10 pro-
duce Dils by, by, bq,.... are.

Yee Yoo Faa Yaweo e
with ¥, =y, X ¥,_,; Xy, _, mod 179,

Sy S0 Zay Saeeaan

with c, = 53, _, + 1 mod 169,

k1]

Then b, in the sequence of bits is formed as the
sixth bic of the product yz, using operations
which may be carried out in most programming
languages: b = {if ¥ mod 64 < 32 then 0. else
1}.

Choosing the small moduli 179 and 169 ensures
that anithmetic will be exact in all compulers, after
which combining the two generators by mulipli-
cation and bit extraction stays within the range of
16-bit integer arithmetic. The result is a sequence
of bits that passes extensive tests for randomness.
and thus scems well suited for initializing a uni-
versal generator,

I'he user's burden is reduced Lo providing three
seed values for the 3.lag Fibonacci sequence, and
one seed value for the congruential sequence =, =
53z, . F Y mod 169. For Fortran implementa-
uons (see Table 2) of the universal generator, we
recommend that a table u{1),..., (97) be shared,
in (labelled) coMMON, with a setup routine, say
RSTARI(I, J, K, 1] and the funciion subprograni,
UNI( ). that retums the required uniform variate.
An alternative approach is (o have a single sub-
program that includes an entry for the setup pro-
cedure, but not all Fortran compilers allow mubii-
ple entries 10 a subprogram. The seed values for



Volume 9. Number §

the setup are f, 3, K and L. Here [, 7, K must be in
the range 1 10 178, and not all 1, while 1. may be
any integer from 0 to 168, If (positive) integer
values are assigned to 1, 3, K, 1. outside the speci-
fied ranges, the generator will still be satisfactory,
but may not produce exactly the sume bit patterns
in different computers, hecause of uncertaintics
when integer operations involve more than 15 hits

To use the generator, one must first call
RSTART(1, ), K, L} to set up the table in labelled
common, then get subsequent wniform random
variables by using UNI{ ) 1p an expression as, for
example, in X - UNK) or Y - 2.+UNI()
ALOG(UNI()), etc.

5. Yerilying the universality

We now suggest a short Fortran program for
verifying that the universal generator will preduce
exactly the same 24-bit reals that other computers
produce. Conversion to an equivalent Basic, Pas-
cal or other program should he transparent, but
those who wish to may get the setup, generating
and verification programs for vanous languages
by writing to the authors.

Assume then that you have implemented the
uns routine with its RSTART sctup procedure in
your computer. Running the short program of
Table 3. or an equivalent, should produce the
output as shown in Table 4.

I it does, you will almost certainly have a
universal random number generator that passes all
the standard tests. and all the latest—more strin-
gent - tests for randomness, has an incredibly long

STATISTICS & PROBABILITY LETTERS

January 19%0)

Fahle 3

CALL RSTARTI(12, ¥4, 56, 78}
DO 6 1 =1, 20005
X =UNID
6 IF(1Lg:.20000)
prant 2L (IMOD{INTiX s it e o Iy M6y, 1 =1, 7)
21 FORMATISX, 7(3)

END
Tahle 4
b 3 1 3 0 4 v
1 3 15 1 L 14 0
6 15 0 2 3 n 0
s 14 2 14 4 (3 0
1 15 7 10 12 2 0

period, about 2'*, and. for given kSTaRI values 1,

J, K. 1. produces the same sequence of 24-bit reals

as do almost all mher commonly-used computers.
Good luck.

References

Marsagha, G (1986), A current view of randorm number gener-
ators. Computer Ntienee and Stanstcs: Proc. 16th Symp
{miecfoce. Atianta, March 1984 {Elsevier Saience Publishern
Amstecdam)

Marsaglia, . and L. Tsav (1985), Matnices and the sicuciure
of random number soquences, Linewr Algebre Appl 67,
147756,

»



Attachment D

Supreme Court of JFFlorida

No. AOSC18-40

IN RE: JUROR SELECTION PLAN: ORANGE COUNTY

ADMINISTRATIVE ORDER

Section 40.225, Florida Statutes, provides for the selection of jurors to serve
within the county by “an automated electronic system.” Pursuant to section
40.225(2), the chief judge of the circuit shall submit to the Supreme Court of
Florida a plan for the selection of juror candidates. Section 40.225(3), Florida
Statutes, charges the Chief Justice of the Supreme Court with the review and
approval of the proposed juror selection process, hereinafter referred to as the
“juror selection plan.”

The use of technology in the selection of jurors has been customary within
Florida for more than 20 years and the Supreme Court has developed standards
necessary to ensure that juror selection plans satisfy statutory, methodological, and
due process requirements. The Court has tasked the Office of the State Courts

Administrator with evaluating proposed plans for compliance with those standards.

Page 17 of 18



On July 20, 2018, the Chief Judge of the Ninth Circuit submitted the Orange
County Juror Pool Selection Plan for review and approval in accordance with
section 40.225(2), Florida Statutes. The proposed plan reflects changes to both
hardware and software used for juror pool selection in Orange County.

The Office of the State Courts Administrator has completed an extensive
review of the proposed Orange County Juror Selection Plan, including an
evaluation of statutory, due process, statistical, and mathematical elements
associated with selection of jury candidates. The plan meets established
requirements for approval.

Accordingly, the attached Orange Juror Selection, received on July 20, 2018,
from The Honorable Frederick J. Lauten, Chief Judge of the Ninth Circuit, is
hereby approved for use.

DONE AND ORDERED at Tallahassee, Florida, on August 9, 2018.

L T Gl

Chief Justice Charles T. Canady"

AOSCES-4 8/ 02018

ATTEST:

AOSNCTN-4,

8/9/2 !;8

. Tomasino, Clerk of Court

AOSC IR-40 802018

Page 18 of 18
-2 -




