ADMINISTRATIVE ORDER IN THE CIRCUIT COURT OF THE
NO. 2014-06-01 NINTH JUDICIAL CIRCUIT, IN AND
FOR OSCEOLA COUNTY, FLORIDA

AMENDED ORDER GOVERNING THE JURY SELECTION PLAN,
OSCEOLA COUNTY

WHEREAS, pursuant to Article V, section 2(d) of the Florida Constitution and section
43.26, Florida Statutes, the chief judge of each judicial circuit is charged with the authority and
the power to do everything necessary to promote the prompt and efficient administration of
Jjustice; and

WHEREAS, pursuant to the chief judge’s constitutional and statutory responsibility for
administrative supervision of the courts within the circuit and to create and maintain an
organization capable of effecting the efficient, prompt, and proper administration of justice for
the citizens of this State, the chief judge is required to exercise direction, see Fla. R. Jud. Admin.
2.215(b)(2), (b)(3); and

WHEREAS, pursuant to section 40.001, Florida Statutes, the chief judge of each judicial
circuit is vested with the overall authority and responsibility for the management, operation, and
oversight of the jury system within his or her circuit; and

WHEREAS, pursuant to section 40.225(2), Florida Statutes, the chief judge of the
circuit, if performing the duties of juror candidate selection as provided in section 40.02, Florida
Statutes, shall submit a plan for the selection of juror candidates to the chief justice for approval.
The plan must be reapproved whenever required by a change in the law, a change in the technical
standards and procedures, or a change in the approved hardware or software used in the
automated system of jury venire selection; and

WHEREAS, the Chief Judge of the Ninth Judicial Circuit performs the duties of juror

candidate selection as provided in section 40.02, Florida Statutes; and

WHEREAS, it is necessary to implement changes to the jury management vendor, and
technical standards and procedures, and in the approved hardware and software used in the
automated system of jury venire selection in Osceola County to facilitate an improved system
consistent with technological advancements; and

WHEREAS, this automated system of jury venire selection for Osceola County, as set
forth in this Administrative Order, was approved and authorized by the Chief Justice on
August 9, 2018, by Supreme Court of Florida Administrative Order No. AOSC18-41, attached as
Attachment D.

NOW, THEREFORE, I, Frederick J. Lauten, pursuant to the authority vested in me as
Chief Judge of the Ninth Judicial Circuit of Florida under Florida Rule of Judicial
Administration 2.215, effective immediately, do order and establish the procedures and method
in Osceola County for the selection of persons for grand jury and petit jury service:

1. Vendor: The jury software vendor is Jury Systems Incorporated (JSI) which provides
the jury management system (JMS) entitled “JURY + Web Generation.”

2. Equipment: The JMS SQL database runs on an IBM x3550 M4 server and an IBM
DS3512 storage system. This equipment is located in the Osceola County Courthouse which is a
secured facility under Court Administration’s control. There are both test and production
instances of the JMS application and both run under Windows Server 2012 R2 and Microsoft
SQL Server 2014.

a. The main jury database is replicated to a secondary jury server at the Osceola
County Courthouse complex. This secondary server is a Unitrends Recovery-714S
powered virtual server running Windows Server 2016. In addition to the replicated
JMS database, this server will be configured as a secondary web/application server to
execute the JMS application in the event of a failure of the main server.

b. In the event of a network failure, users in the Osceola County Courthouse will
execute the application from the replicated JMS database.

¢. Nightly, Court Administration will fully back up the JIMS database using Commvault

Simpana backup software for Windows servers stored to both local and offsite disks.
Backup disks are kept for one month.

Page 2 0f 18

d. All hardware and software associated with the jury application will be upgraded on
an as needed basis.

3. Method for Selecting Venire:

a. The names shall be taken from:

1. A quarterly updated list of Florida Department of Highway Safety and Motor
Vehicle (DHSMYV) licensed drivers and identification card holders, 18 years of age
or older, who are citizens of the United States, and legal residents of Florida
residing in Osceola County.

2. Persons filing affidavits pursuant to section 40.011, Florida Statutes.

b. The Clerk of Court for Osceola County is designated the official custodian of the
DHSMV list provided specifically for venire selection and shall ensure that it is not
accessible to anyone other than those directly involved in the selection of venires, as
herein provided.

c. The Court Administrator shall cause Osceola County petit and grand jury venires to
be selected from the DHSMYV list programmed into Court Administration’s computer
network using the method described in Attachment A (Process for Maintaining and
Updating Prospective Juror File) and Attachment B (Juror Selection Process) in
accordance with directions received from the Chief Judge or the Chief Judge’s designee.
Court Administration jury personnel may draw the venires and perform any other
functions allowed by statute.

4. Administrative Order 2014-06 is vacated and set aside except to the extent that it has
been incorporated and/or amended herein. Vacating an Administrative Order that vacates a prior
Order does not revive the prior Order.

DONE AND ORDERED at Orlando, Florida, this 14™ day of August, 2018. Nunc pro
tunc to August 9, 2018.

s/
Frederick J. Lauten
Chief Judge

Copies provided to:

Clerk of Courts, Osceola County
Clerk of Courts, Orange County
General E-Mail Distribution List
http://www.ninthcircuit.org

Page 3 of 18

Attachment A
Process for Maintaining and Updating Prospective Juror File

1. The Florida Department of Highway Safety and Motor Vehicles (DHSMV) sends an
electronic file of licensed drivers and ID card holders to the Florida Association of Court Clerks
(FACC). After separating the records into multiple files based on “county of residence” and
excluding drivers and ID card holders under 18 years of age, the FACC transmits the appropriate
county’s file to the Clerk of Court for that county via email.

2. A software utility from Jury Systems Incorporated (JSI) is used to match and merge the new
FACC file with existing juror records stored in the Jury Management System (JMS), an
application also from JSI. The JMS database includes juror personal data, service history, and
excusal status. Jurors who are temporarily or permanently excused are flagged as ineligible but
not deleted from the database. The records from the FACC file are compared to the existing
juror records in the JMS database using driver’s license number. Where no match is found
against either driver’s license number or social security number, the FACC records are matched
to the JMS records using the last name, suffix, first name, and date of birth as a set of matching
criteria. Where a match is found, the addresses are compared and, if different, the DHSMV
address replaces the JMS address. Records that exist in the FACC file but not in the JMS
database, are added to the JMS database. Records that exist in the JMS database but not in the
FACKC file, are flagged as inactive in the JMS database unless they were created as a result of the
filing of an affidavit pursuant to section 40.011, Florida Statutes. Records that are flagged as
inactive remain in the JMS database indefinitely but are bypassed by the system during the jury
pool selection process.

3. Maintenance is conducted on a regular basis to update juror records in accordance with
section 40.022, Florida Statutes, (e.g., identifying convicted felons, deceased persons, and legally
incapacitated persons, and processing them according to statute). New maintenance procedures
will be developed and employed to comply with other relevant statutes when implemented,
assuming that data and/or processes from external agencies are available.

4. Persons filing affidavits pursuant to section 40.011, Florida Statutes are added to the JMS
database through an on-line process within two working days.

Page 4 of 18

Attachment B
Juror Selection Process

1. The selection of candidates for weekly petit jury pools is done at least five weeks in advance
of the reporting date. For Grand Jury, selection of candidates is done twice a year, three months
in advance of the reporting date.

2. Using JMS, the Jury Pool Manager or his/her respective designees, enters the jury pool
location and the number of jurors required (minimum of 250 per section 40.02, Florida Statutes)
for the service date specified. No other information is supplied by the user. The JMS will select
and summon the number of jurors requested. Data associated with the selection of a juror pool
(e.g., date, number of jurors requested) is stored for future retrieval and reporting.

3. Prior to invoking the process for randomly selecting jurors, IMS determines the number of
jurors previously postponed, deferred, or re-summoned to the service date specified and subtracts
this number from the total number requested. The result is the number of jurors that JMS must
randomly select from the juror database.

4. The JMS random selection process is then invoked for each jury pool requested. For this
process, Jury Systems Incorporated uses a Universal Random Generator system, more fully
detailed in Attachment C.

5. Prior to printing and sending summonses, juror addresses are processed by Peregrine
Solutions software. Peregrine Solutions performs address verification, a process of checking an
address to ensure that it is properly formatted and conforms to address structure standards. If
Peregrine Solutions cannot resolve an address, it is left unchanged.

6. A jury summons, specifying the jury service location and date and time to appear, is then
produced and mailed to each individual selected.

Page 5 of 18

Attachment C

JURY SYSTEMS

INCORPORATETD

JURY+ Next Generation
Universal Random Generator

Detailed Design & Functionality

Notice

Technigues and work product contained in this
document are considered proprietary to Jury
Systems Incorporated. They may not be
revealed or released to any party without the
express written consent of Jury Systems
Incorporated.

This material may not be copied or reproduced
in any form without the express written
permission of Jury Systems Incorporated.

©CQctober 2006

Page 6 of 18

CONTENTS

Development of the Universal Random Number Generator...........co.ceveveeeeeecronne

JURY+ use of the Universal Random Number Generatoroeveecemoooeoevesmssns

Logic Specifications for the

Universal Random Number Generator..................

Validation of the Universal Random Number Generator...........coueeeevvsssssssons

APPENDIX A - Toward a Universal Random Number Generator By George

Marsaglia and Arif Saman

Page 7 of 18

1. Introduction

This document describes the theory and structure of the random number generator that is used
by the JURY+ Jury Management System to perform those jury management business
functions that require randomization.

The random number generator employed by the JURY+ software is the “Universal” generator
which appeared in an article written by George Marsaglia and Arif Zaman who are part of the
“Supercomputer Computations Research Institute and Department of Statistics” at The
Florida State University, Tallahassee. Also contributing to the article was Wai Wan Tsang a
member of the “Department of Computer Science” at the University of Hong Kong.

The article (titled: “Toward a Universal Random Number Generator” is included in its entirety
as an appendix to this document.

2. The Definition of the Universal Random Number Generator

The Universal generator algorithm is a combination of a Fibonacci sequence (with lags of
97 and 33, and operation "subtraction plus one, modulo one") and an "arithmetic sequence”
(using subtraction).

It passes ALL of the tests for random number generators and has a period of 2'% and is
completely portable (gives bit identical results on all machines with at least 24-bit mantissas
in the floating point representation).

The Universal random number generator employed by Jury Systems Incorporated in its JURY +
application software is a true, exact implementation of the algorithm defined in "Toward a
Universal Random Number Generator” and thus all randomness tests for that process
published in statistical literature applies to the JURY+ implementation.

3. Development of the Universal Random Number Generator

In June 20086, the Florida State AOC required that all randomization for purposes of jury
selection be accomplished using the Universal Random Number generator described in an
article titled “Towards a Universal Random Number Generator" by George Marsaglia. The
Universal Generator is a combination generator. It combines two different generators, the
first of which takes two user seed values, converts them into 4 seed values and generates a
sequence of 97 random numbers. These number become “seed” values for the second
random generator which uses them in a combination process to combine the series of
random numbers, producing a “Universal” value.

Previously, Jury Systems Incorporated used the “Marsaglia” random number generator which
is a feedback shift register (FSR) method to generate uniform random numbers between 0
and 1, inclusive. The method was named for and based upon the idea of George Marsaglia
(1965) who developed a coupled random number generator called super duper. Super duper
couples a multiplicative-congruential generator with an FSR generator. This generator was

Page 8 of 18

subjected to extensive testing by Rand Laboratories and shown to pass all randomness tests
for all sample sizes likely to be encountered in the JURY selection process. This routine is a
2-seed routine, in that each number in a random sequence is provided based on two seed
values.

Using the referenced article and a published C-language implementation of the Universal
random generator (both of which are included as an appendix to this document), Jury
Systems Incorporated created a version of the routine for integration into its JURY+
application for use in Florida and any other site that may desire it. The JSI implementation
was done in August of 2006 and is a COBOL version of the routine. A copy of the JSi
implementation is also included in an appendix.

4. JURY+ use of the Universal Random Number Generator

Wherever randomness is requisite in the JURY+ application, the Universal generator is
employed. Those application functionalities include the following:

. Source List Processing
When source lists are processed to supply juror names to JURY+, each member of the
list is assigned a random number. The list is then sorted by the random number (known
as a Juror |dentification Number - JID) and the first 'n' records are selected per client
requirements.

. Juror Summonsing
When it is necessary to summon jurors to a specific court and date, the full set of eligible
jurors is assigned a random number. The list is sorted and the first ‘n’ number of jurors
are selected.

. Panel Selection
When requests for juror panels are received at the assembly room, the user initiates a
computer program to create a panel of the requested size. The computer program
provides a randomly ordered list of jurors available for service at that moment.

Each juror in the pool is assigned a random number. Once all jurors have thus been
assigned a temporary unique number, the list is ordered by that number. Once the panel
jurors are selected from this list, the panel jurors are re-randomized and a Case
Information Sheet listing them is produced assuring that each juror has an equal
opportunity to be the first seated for voir dire.

. Reporting
Many of the JURY+ reports allow the user to select list of jurors that are ordered
randomly.

Page 9 of 18

5. Logic Specifications for the Universal Random Number Generator

The Universal Generator is a combination generator in that it combines two different random
generators to provide a random series that passes every randomness test. The principal
component of the two has a very long period, about 10%. It is a lagged-Fibonacci generator
based on the binary operation x times y on reals x and y.

The Fibonacci generator has an extremely long period and appears to be suitably random
based on results of stringent tests that were applied to it. However, there is one test which it
fails: the “birthday-spacings test. In order to get a generator that passes all of the stringent tests
the first generator is combined with a second generator.

The choice of the second generator is a simple arithmetic sequence for the prime modulus 224
-3=16777213.

Detailed information regarding the theory behind the Universal Random number generator is
provided in the published article included as appendix C of this document. The article provides
a Fortran language version of the algorithm.

Sometime after the original article appeared, the Fortran program was converted into a “C"
programming language implementation and published. The “C” version is included as an
appendix to this document.

For implementation into JURY+, JSI developed a COBOL language implementation of the
Universal generator by duplicating the logic published in the “C" program. The JSI version is
also included in an Appendix to this document.

To the greatest extent possible, the variable names used in the JSI version directly correspond
to identically named variables in the “C" implementation. This makes the comparison of the two
sets of logic much more straight forward.

A review of the "COBOL" version shows that there are two entry points (distinct processes) in
the Universal Algorithm. The first entry point is a routine “1000-set-seeds” (this corresponds to
the subroutine called “RMARIN” in the “C” version.

The 1000-set-seeds routine implements the “first’ random generator in the Universal process.
Using two seed values supplied by the user, it creates four seed values and uses them to create
a Fibonacci sequence of 97 random numbers. This series of random numbers is used in the
creation of the Universal random number.

Additionally this routine creates a representation of a second sequence (initially set to
362436/16777216 and referenced by variables “C”, “CD”, “CM”). The Fibonacci series and this
series are combined (in the random number generation routine below) to create a Universal
Random number.

Page 10 of 18

The second routine is 2000-Gen-Rand (this corresponds to the “RANMAR” routine in the “C”
program). This routine generates a Universal Random number by combining the two sequences
(series) set up in the 1000-set-seeds routine.

First, two entries from the Fibonacci series (referenced with variables “I” and *J"} are subtracted
from each other, (the first time a Universal random number is requested the two entries
referenced are 97 and 33 respectively) giving the basis for our Universal random number.

After the basis calculated, it replaces the Fibonacci number referenced by “I” (in preparation for
the next time a universal number is needed). Then, both references (“I" and “J") are
decremented. When either of the reference indicators (“I" or “J”) reach zero, they are reset to
their initial value (97 and 33 respectively). Thus the series of 97 numbers is processed in a
circular fashion. (All of this is in preparation for the next request for a Universal random number).

Finally, the next number in the second series (which was initialized in 1000-set-seeds and are
represented by vanables “C”, “CD”, and "CM") is computed and combined with the basis random
number (via subtraction). The result is returned to the calling program as a “Universal” random
number.

6. Validation of the Universal Random Number Generator

As indicated in the "Towards a Universal Random Number”, the statistical “randomness” of this
routine has been thoroughly tested and documented. It is also clearly explained that an
appropriately coded algorithm, regardless of the language it is written in or the computer it is
executed on, produces exactly the same “random” sequence when given identical seed values.

Thus, the validation (and thus proof of randomness) becomes one of showing that two different
implementation produce the same known results when given appropriate seed values.

The JSI implementation produces the same resuits as the program on which it was modeled.
The “C" version of the program indicates the following test to insure a properly functioning
Universal random number generator algorithm:

Use IJ = 1802 & KL = 9373 to test the random number generator. The
subroutine RANMAR should be used to generate 20000 random numbers.
Then display the next six random numbers generated multiplied by

4096*4096
If the random number generator is working properly, the random numbers
should be:

6533892.0 14220222.0 7275067.0
6172232.0 8354498.0 10633180.0

These are exactly the results produced by calling the JSIRAND1 routine with seed value
1082 and 9373 and viewing the 20001 through 20006™ random numbers.

Page 11 of 18

l APPENDIX A - Toward a Universal Random Number Generator By George

Marsaglia and Arif Saman

Statistics & Probability Letiers B (1990} 35-3%
North-Huolland

Jungary 1990

TOWARD A UNIVERSAL RANDOM NUMBER GENERATOR

George MARSAGLIA and Anf ZAMAN

Sugercamputer Computations Research Insticute and Department of Siatistecs, The Floruda State Uneversity, Taltehassee,

FI 12inn 1'SA

Wai Wan TSANG

Departnent of Computer Scence, Umveericy of Hong Keng, Pokfulum Read. Hong Kong

Rovessed Devemnber 19587
Revised June 1988

Abstracr: Thin articie desenbes an approach towards a random number generstor that passes 2t of the sirpgent tests fog
tandemness we have pur 0 ot and that » ohle 1o produce exzatly the same wequence of cnferm sandem variile o2 wode
vanety of compuiers, including TRSSC, Apple. Maciniowh, Commadore, Kaypro, IBM PC. AT, PC and AL clonzs. Sun, Vas,

1BM 360,7370, 3050, Amdahl, CDC Cyber and even 203 and ETA supercompaters,

Keywords: Random number generator

1. Introduction

An essential property of a random aumber gener-
ator is that it produce a satisfactorily random
sequence of numbers. Increasingly sophisticated
uses have rimsed guestions about the suitability of
many of the commonly available generators (see.
for example. Marsaglia, 1986) Another shortcom-
1ng in many, mndeed most, rundom number genera-
tors is they are not able to produce the same
sequence of varables in 3 wide variety of com-
puters. Such a requirement seems essential for an
experimental science that lacks standardized
equipment for venfving results.

We address these deficiencies here. suggesting a
combinalion generator tailored particularly for re.
producibility in all CPU’s with at least 16-bit
integer arithmetic. The random numbers them-
selves are reals with 24-bit fractions, uniform on
[Q. 1). We provide u suggested Fortran implemen-
tation of this “universal” generator. together with
suggested sample output with which one may verify
that a particular computer produces cxactly the
samie bit patterns as the computers enumerated tn

VI6T-T152 /90,8550 ¥ 1990, Elsevier Science Publishers BV (North-Helland)

the abstract. The Fortran code is so straightlor-
ware that versions may be readily written lor
other languages: so far, correspondents have writ-
ten or confirmed results for Basic, Fortran, Pascal,
C, Modula Il and Ada versions.

A dist of desirable properties for a random
number generator might include:

(1) Randomness. Provides a sequence of nde-
pendent umiorm random varnables sutable for all
reasonable apphcations. In particular, passes ali
the Latest tests for randemness and independence.

(2) Long period. Able to produce. withoul re-
peating the imuai sequence. all of the random
vaniables for the huge samples that current com.
puter spreds make possible.

13) Efficiency. Fxecution is rapid. with modest
memory reguirements.

() Repeatabifity. Initial conditions (seed val
ues) completely determine the resulting sequence
of random vanables.

{5) Porrabilisy. ldentical sequences of random
variables may be produced in a wide variety ol
computers, for given starting valucs,

(6) Homogeneity. All subsets of bits of the

"y
wh

Volume 9, Number 1

rumbers must be random, from the most- 1o the
teast-significant bits.

2. Chuice of the method

We seek a generator that has ail of these desirable
propertics. (AT Well, alimost ah; the geacrator we
propose falls short on effictency. for it is slower
than some of the standurd. simple. machine-de-
pendent genecators, But all of the standard gencr-
ators fuil one or more of the stringent tests for
rangomness. See Marsagha, 1986.)

Our choice is a combination geaerator. It com-
bines two different generators. The principal com-
ponent of the two has a very long periad. about
10™. I is a lagged-Fibonacci generator based on
the binary operation x-+y on reals x and y de-
fined by

voy={if x>y then x -y clse v —y+1}.

Ultimately, we Tequire a sequenie of meals an
[0, 1y U, Us, U, ..., cach with a 24-bit fraction.
We choose 24 bits because it 15 the most common
fraction size for single-precision reals and because
the operation x «y can bu carried out exactly. with
no loss ol bits, in most computers—those with
reals having fractions of 24 or more bits,

This choice allows us 20 use ¢ lagged-Fibonace
generator. designated F(r. s, +), as the basic com-
ponent of our universal gencrator. It provides a
sequence of reals by means of the operation X+ y:

The lags r and s are chosen so that the sequence
is satsfactorify random and has a very long period,
If the initial {seed) values, x|, x,...., x, are each
24-bit fractions. x, =7,/2*, then the resulting se-
guence, generated by x, =y, +x__.. will pro-
duce 4 sequence with period and structure identi-
cal to that of the corresponding sequence of in-
tegers.

Bodoolyeoon with f,=14,_,—1, mod2*.

L L}

For snitable choices of the lags » and s the
period of the sequence is (29— 1)x 2" ' The
nced to choose r large for long period and ran-
domness must be balanced with the resulting

3%

STATISTICS & PROBABILITY LETTERS

January 9%

memory costs: 2 tuble of the ¢ most recent
values must be stored. We have chosen r= 97,
s = 33, The resulting cost of 97 storage locations
for the arcular hist needed 16 implement the gen-
erator scems reasonable. A few hundred memory
locations more or less is no Jonger the problem it
used to be. The peood of the resulting generator is
(2%~ 11 x 2™ about 2 which we boost 1o 2%
by the other part of the combination generator,
descnbed below. Methods for establishing periods
for lagged-Fibonacei generators are given in
Marsaglia and Tsay (1985).

3. The second part of the combination

We now turn to choice of a generator to combine
with the F(97. 33,) chosen above. We are not
content with that generator alone, even though it
has an extremely long pericd and appears to he
suitably random from the stringent tests we have
applied to it. But 1t fails one of the tests: the
birthday-spacings test. A typical version of this
test goes as follows: let cach of the gencrated
values x,, x;..... represent a “birthday™ in a
“year" of, sav. 2™ days. Choose. say, mr = 512
hirthdays, x,, x......x,. Sort these to get x,,, €
X £ 0 € X, Form spacings ¥, = x4, » =
Xin = Xzpeers Yoo ™ Xy = Xm0
Sort the spacings, getling ¥, < kn = **° £ Hah
The test statistic is J, the number of duplicate
values 1o the sorled spavings, e, inliabize J -0
then for i =2 tom. put J=J+1if 3, =y, 4.
The resubting J should have a Poisson distniibution
with mean A = m’ /(4n) = m’ /2.
Lagged-Fibonacei generators F(r, s, =) fail this
test, unless the lag r 15 more than 300 or the
hinary operation - is multplication for odd in-
tegers mod 2*, The count J, the number of dupli-
cate spacings, is only asymptotically Poisson dis-
tributed, requiring that a, the length of the year.
he lacge. Applications of the birthday spacings test
typically choosg 2 to he 100000 or more—for
exampie, using the ieitmost i3 or more bas of the
random number (0 provide a ~birthday™.
Detailed discussion of the test and test resulis
will appear elsewhere, but here are results of a
typical 1est on four different generators (see Table
1): two lagged-TI'ibonacei generators using subtrac-

P O T SYPP &Y

Volume 9, Number |

STATISTIUS & PROBARILILY LETITLRS

January 1990

Table i

A hirthdas-spacings test oy four gencrators

duplicate aumber F97.33%) F(55.24, -) F(97. %3, +} congroential

spacings expected ahserved cheerved ohserved abserved
o 36.79 = nf_-l 29 41 jpﬁ"_ -
1 36.7% 16 14 RA) A7
2 IR.3% 1% 34) 20

=3 8.m 25 21 6 7

chi-square for 3 d.f a8\ 691 153 0.29

probability of better fit 13000 1.000¢ 0,33

uon, a lagged-Fibonucel generator using multipli-
cation on odd integers, and a popular congruential
generator, x, = 69069x, ;. all for modulus 2°°,
The leftmost 25 bils are used to choose one of 512
birthdays. Thus n=2"" and m = 2° so J should
be Poisson distributed with A= m* /(dn)=1. Of
the four, only the F(97. 33, ») and the congruen-
tial generator pass. The two lagged-Fibonacci gen-
erators using subtraction fail the 1es1. Their
duplicate-spacing counts are far from Poisson dis-
itibuled. and rtemain so, whatever the choice of
seed values, (and for a wide variety of choices of
n. nmand lags r. 5 as well),

In order 1o get a generator that passes alf the
stringent tests we have applicd, we have resorted
10 combining the F(97. 33, +) generator with a
second generator. Combining different generators
has strong theoratical support {see Marsaglia,
1986).

Our choice of the second generator is a simple
arithmetic sequence for the prime madulus 279 - 3
= 1&€777213. For an initial integer /, subsequem
tegers are [-k, 1 =2k, I -3k,mod
16777213, This may be implemented in 24-bit
reals, again with no bits lost, by letting the initial
value be, say ¢ = 362436,/17666216, then forming
successive 24-bit reals by the operation ¢ o d, de-
fined as

cod={il ¢c=d then ¢~ d.

else ¢ — 44 16777213 716777216} .

Here & 15 some convenient 2d-bit rational, say
d = 7654321 /16777216. The resulting sequence has
period 2** — 3. and while it ix far 100 regular for
use alone, it serves, when combined by means of
the « operation with the F(97. 33, +) sequence, o
provide a composite sequence that meets all of the

0.432

criteria mentioned in the introduction, except for
efficiency. All of the operauons in the combina-
tion generator are simple and efficient, and the
generation part is quite simple, but the setup
procedure, setting the inttial 97 x values, is more
complicated than the generating procedure. We
now 1rn to details of implementation.

4. lmplementation

We have two hinary operations, cach able 10 pro-
duce exact arithmene on reals with 2d-hit frac.
tions:

vey={if x>y then x ~y else x —p+ 1),
cod= (il ¢>d then ¢ - d,
else c—d + LOFTI213 706771210},

We require computer wnstructions that will gener-
ate two sequences:
Ny Xaw Xqee oy Xgss Xgeooen,

with x,=x, ¢ °
C-_. (‘g. ':']-----

¢, (7654321 /16777216).

X, - 11,

with ¢, =

Then produce the combined sequence

Uy L= Uioos withiL, = x, 0 c,.

The ¢ sequence requires only one initial value,
which we arbitranly set to ¢, = 362436 /16777216.
The x sequence reguires 97 mnial (sced) values,
cach a real of the form 1/16777216, with 0 < [=
16777215, The main problem in implementing the
universal penerator is in finding a suitable way to
set the 97 imtial values, a way that is both rundom
and consistent from ane computer 10 another.

Youume 9, Number 1

Tahle ?
Foriran subprograms for initiahizing and callizg UNI

STATISTICS & PROBABILITY LETTERS

Jonuvary 1990

SUBROUTINE RSTART (L J.K. L)
REAL U9
COMMON /SET1/ U, C.CD.CM., [P. JP
DO 2 1) =197
S=0
T=23
DOAI--124
M= MOD(MOIXI=J 1791+ K, 179
Pl
I-K
K-M
L =MOD{33=L~+ 1, 169}
IF(MOTHRL « M, 64 GF32) S~ 84 T
2 T=S%eT
Ul =8
C = 362436. /16777216,
Ch = 7654321, /167777216,
CM =16777213. /16777216,
IP =97
Jp =33
RETURN
END

[)

The F(97. 33. - mod 1) generator is quite
robust, in that it gives good resulls even for bad
initial values. Nonetheless, we feel that the initial
table should itself be filled by mcans of a good
generator, one that need not be fast because it is
used only for the setup. Of course, we might ask
that the user provide 97 seed values, each with an
exact 24-bit fraction, but that seems 100 greatl a
burden. After considerable experimentation, we
recommend the following procedure:

Assign values bit-by-bit to the initial tabile
Ut), UQ2),....U(97) with a random sequence of
bits by, b1 by..... Thus U(1)=0.5\b; ... byy.
U(2) = U.by by by and 50 on. The sequence ol
bits 1s generated by combining two different gen-
erators, each suitable for exact implementation in
any computesr: one a 3-lag Fibonacci gencrator
using muliiplication, the other an ordinary con-
gruential generator for modulus 169.

The two sequences that are combined to pro-
duce bils by, by, b ..., are,

Yoo Yoo Fav Faeoon
with p, =y, X ¥,_, X ¥, _, mod 179,
s Cga-nnn

with L, - 53.;,,_, + 1 mod 169,

-
HOEFY

{Ces e
Cl..
Cane
(Ceae
Casnse

{"anae

FUNCTION UNI(}

FIRST CALL RSTART (1,0, K, L)
WITH L J. K. L INTEGERS

FROM 1710 Le8, NOT ALL

NOTE: RSTART CHANGES 1) K, 1.
S0 BE CAREFUL IF YOU REUSE
THEM INTHE CALLING PROGRAM.

REAL U(97)
COMMON /SETi/ L.C.CD,CM. IP. IP
UNL-uagpy v
IFUNLLTO) UNI « UNL+1,
Li(IP) = UNI
P - 1P -1
IFUP EQ.0) IP = 97

WP-Ip-1
IFUP.EQ) IP = Y7
C=C-CD
IRCATH)C - C+OM
UNI=~UNI- ¢
IF(UNLLT.0) UNi = UN[+
RETURN
END

Then &, in the sequence of bits 15 formed as the
sixth bit of the product y,z,. using operations
which may be carried out in most programming
languages: b, = (if .z mod 64 < 32 then 0. else
1}

Choosing the small moduli 179 and 169 ensures
that antbmetic will be exact in all computers. aftee
which combining the two generators by multipli-
cation and bit catraction stays within the range of
16-bit integer arithmetic. The result is 3 sequence
of bits that passes extensive tests for randomness.
and thus seems well suited for initializing a uni-
versal generator.

Fhe user’s burden 1s reduced to providing three
seed values for the 3-lag Fihonacei sequence. and
one seed value for the congruential sequence =, =
53z, . + 1 mod 169. For Fortran implementa-
tons (see Table 2) of the universal generator, we
recommend that a table u(l)...., ¢{97) be shared,
in (labelled) coMMON, with a setup routine, say
HSTARI(i, J, K, L) and the Junclion subpiogranl,
UNI(), that relurns the required uniform variste.
An alternative approach is 10 have a single sub-
program that includes an entry for the setup pro-
ccedure, but not all Fortran compilers allow multi-
ple entries to a subprogram. The seed values for

t

Volume 9. Number |

the setup are (, 5, K and ¢. Here 1, 7, K must be in
the range 1 (0 178, and not all 1, while 1. may he
any integer from 0 1o 168. 1f (positive) integer
values are assigned to 1, J, X, 1. outside the spea-
fied ranges, the generator will still be satisfactory,
but may not produce exactly the same bit patterns
in different compulers, because of uncertasntics
when integer operations involve more than 13 hits.

To use the gencrator, one must first call
RSTART(], J, K, t} 10 sct up the table in labelied
common, then gel subsequent uniform random
variables by using UNI() in an expression as, for
cxample, in X = UNK{) or Y = 2.+UNK{)
ALOG(UNI()), etc.

5. Yerifying the universality

We now suggest a short Fortran program for
verifying that the universal generator will produce
exactly the same 24-bit reals that other computers
produce. Conversion to an equivalent Basic, Pas-
cal or other program should be transparent, but
those who wish to may get the setup. generating
and verification programs for vanous languages
by writing to the authors.

Assume then that you have implemented the
UN] toutine with its RSTART sctup procedure in
your computer. Running the short program of
Table 3, or an equivalent, should produce the
output as shown in Tablc 4.

If it does, you will almost certaindy have a
universal random number generator that passes all
the standard tests. and all the latest—more strin-
gent — tests for randomness, has an incredibly long

STATISTICS & PROBABILITY LETTERS

Jazuzry 1950

Tahkle 3

CALL RSTART(}Z, 34, 56,7%)
DO 6 =1, 20005
X = LN
6 IF(1.g:. 200000)

prnt 21 (MOD{INTX ¢ 16,4 s 13161, 1= 1.7
21 FORMATI(8X. 713)

END
Tahle 4
T 1 3 0 3 m
13 g 15 1 I 12 0
6 15 0 2 3 1 0
s 14 2 14 4 8 0
7 15 7 0 12 2 o

period, about 2'*, and, for given ks1akt values 1.

J. K. 1, produces the same sequence of 24-bit reals

as do almost all other commonly-used computers
Good luck.

References

Mazsagha, G (1986). A current view of random number gener-
avors, Coriputer Scieme and Stausnes: Proc, 1oth Symp
fntecfuee. Atlante, March 1984 (Fleevier Science Publisher
Amseedam)

Marsaglia, G. and L.H. Tsav (1985), Mairnices and the steuciure
of random number sequences, Limear Aigebra App! 67,
147..256.

il

Attachment D

Supreme Court of Fflorida

No. AOSC18-41

IN RE: JUROR SELECTION PLAN: OSCEOLA COUNTY

ADMINISTRATIVE ORDER

Section 40.225, Florida Statutes, provides for the selection of jurors to serve
within the county by “an automated electronic system.” Pursuant to section
40.225(2), the chief judge of the circuit shall submit to the Supreme Court of
Florida a plan for the selection of juror candidates. Section 40.225(3), Florida
Statutes, charges the Chief Justice of the Supreme Court with the review and
approval of the proposed juror selection process, hereinafter referred to as the
“juror selection plan.”

The use of technology in the selection of jurors has been customary within
Florida for more than 20 years and the Supreme Court has developed standards
necessary to ensure that juror selection plans satisfy statutory, methodological, and
due process requirements. The Court has tasked the Office of the State Courts

Administrator with evaluating proposed plans for compliance with those standards.

Page 17 of 18

On July 20, 2018, the Chief Judge of the Ninth Circuit submitted the
Osceola County Juror Pool Selection Plan for review and approval in accordance
with section 40.225(2), Florida Statutes. The proposed plan reflects changes to
both hardware and software used for juror pool selection in Osceola County.

The Office of the State Courts Administrator has completed an extensive
review of the proposed Osceola County Juror Selection Plan, including an
evaluation of statutory, due process, statistical, and mathematical elements
associated with selection of jury candidates. The plan meets established
requirements for approval.

Accordingly, the attached Osceola County Juror Selection Plan, received on
July 20, 2018, from The Honorable Frederick J. Lauten, Chief Judge of the Ninth
Circuit, is hereby approved for use.

DONE AND ORDERED at Tallahassee, Florida, on August 9, 2018.

Lon,

Chief Justice Charles T. Canady"
AOSCLIB-41 8972018

ATTEST:

AOSC18- 8/9/2';3

joMTgmasino, Clerk of Court

AOSCIE-$8 5792018

Page 18 of 18
Lol

